Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38534359

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease characterized by the relentless deposition of extracellular matrix (ECM), causing lung distortions and dysfunction. Animal models of human IPF can provide great insight into the mechanistic pathways underlying disease progression and a means for evaluating novel therapeutic approaches. In this study, we describe the effect of bleomycin concentration on disease progression in the classical rat bleomycin model. In a dose-response study (1.5, 2, 2.5 U/kg i.t), we characterized lung fibrosis at day 14 after bleomycin challenge using endpoints including clinical signs, inflammatory cell infiltration, collagen content, and bronchoalveolar lavage fluid-soluble profibrotic mediators. Furthermore, we investigated fibrotic disease progression after 2 U/kg i.t. bleomycin administration at days 3, 7, and 14 by quantifying the expression of clinically relevant signaling molecules and pathways, epithelial mesenchymal transition (EMT) biomarkers, ECM components, and histopathology of the lung. A single bleomycin challenge resulted in a progressive fibrotic response in rat lung tissue over 14 days based on lung collagen content, histopathological changes, and modified Ashcroft score. The early fibrogenesis phase (days 3 to 7) is associated with an increase in profibrotic mediators including TGFß1, IL6, TNFα, IL1ß, CINC1, WISP1, VEGF, and TIMP1. In the mid and late fibrotic stages, the TGFß/Smad and PDGF/AKT signaling pathways are involved, and clinically relevant proteins targeting galectin-3, LPA1, transglutaminase-2, and lysyl oxidase 2 are upregulated on days 7 and 14. Between days 7 and 14, the expressions of vimentin and α-SMA proteins increase, which is a sign of EMT activation. We confirmed ECM formation by increased expressions of procollagen-1Aα, procollagen-3Aα, fibronectin, and CTGF in the lung on days 7 and 14. Our data provide insights on a complex network of several soluble mediators, clinically relevant signaling pathways, and target proteins that contribute to drive the progressive fibrotic phenotype from the early to late phase (active) in the rat bleomycin model. The framework of endpoints of our study highlights the translational value for pharmacological interventions and mechanistic studies using this model.


Assuntos
Fibrose Pulmonar Idiopática , Pró-Colágeno , Ratos , Humanos , Animais , Fibrose Pulmonar Idiopática/patologia , Fibrose , Colágeno/metabolismo , Bleomicina , Progressão da Doença
2.
Pharmacology ; 109(1): 22-33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37980896

RESUMO

INTRODUCTION: We investigated the potential of LPS (10-300 µg/rat) administered intratracheally (i.t.) to induce reproducible features of acute lung injury (ALI) and compared the pharmacological efficacy of anti-inflammatory glucocorticoids and antifibrotic drugs to reduce the disease. Additionally, we studied the time-dependent progression of ALI in this LPS rat model. METHODS: We conducted (1) dose effect studies of LPS administered i.t. at 10, 30, 100, and 300 µg/rat on ALI at 4 h timepoint; (2) pharmacological interventions using i.t. fluticasone (100 and 300 µg/rat), i.t. pirfenidone (4,000 µg/rat), and peroral dexamethasone (1 mg/kg) at 4 h timepoint; (3) kinetic studies at 0, 2, 4, 6, 8, 10, and 24 h post-LPS challenge. Phenotype or pharmacological efficacy was assessed using predetermined ALI features such as pulmonary inflammation, edema, and inflammatory mediators. RESULTS: All LPS doses induced a similar increase of inflammation, edema, and inflammatory mediators, e.g., IL6, IL1ß, TNFα, and CINC-1. In pharmacological intervention studies, we showed fluticasone and dexamethasone ameliorated ALI by inhibiting inflammation (>60-80%), edema (>70-100%), and the increase of cytokines IL6, IL1ß, and TNFα (≥70-90%). We also noticed some inhibition of CINC-1 (25-35%) and TIMP1 (57%) increase with fluticasone and dexamethasone. Conversely, pirfenidone failed to inhibit inflammation, edema, and mediators of inflammation. Last, in ALI kinetic studies, we observed progressive pulmonary inflammation and TIMP1 levels, which peaked at 6 h and remained elevated up to 24 h. Progressive pulmonary edema started between 2 and 4 h and was sustained at later timepoints. On average, levels of IL6 (peak at 6-8 h), IL1ß (peak at 2-10 h), TNFα (peak at 2 h), CINC-1 (peak at 2-6 h), and TGFß1 (peak at 8 h) were elevated between 2 and 10 h and declined toward 24 h post-LPS challenge. CONCLUSION: Our data show that 10 µg/rat LPS achieved a robust, profound, and reproducible experimental ALI phenotype. Glucocorticoids ameliorated key ALI features at the 4-h timepoint, but the antifibrotic pirfenidone failed. Progressive inflammation and sustained pulmonary edema were present up to 24 h, whereas levels of inflammatory mediators were dynamic during ALI progression. This study's data might be helpful in designing appropriate experiments to test the potential of new therapeutics to cure ALI.


Assuntos
Lesão Pulmonar Aguda , Pneumonia , Edema Pulmonar , Piridonas , Ratos , Animais , Lipopolissacarídeos/toxicidade , Fluticasona/uso terapêutico , Fluticasona/farmacologia , Fator de Necrose Tumoral alfa/genética , Interleucina-6 , Cinética , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Pulmão , Pneumonia/induzido quimicamente , Inflamação , Mediadores da Inflamação , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Edema
3.
PLoS One ; 17(11): e0276462, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36413536

RESUMO

The long-sought-after "magic bullet" in systemic therapy remains unrealized for disease targets existing inside most tissues, theoretically because vascular endothelium impedes passive tissue entry and full target engagement. We engineered the first "dual precision" bispecific antibody with one arm pair to precisely bind to lung endothelium and drive active delivery and the other to precisely block TGF-ß effector function inside lung tissue. Targeting caveolae for transendothelial pumping proved essential for delivering most of the injected intravenous dose precisely into lungs within one hour and for enhancing therapeutic potency by >1000-fold in a rat pneumonitis model. Ultra-low doses (µg/kg) inhibited inflammatory cell infiltration, edema, lung tissue damage, disease biomarker expression and TGF-ß signaling. The prodigious benefit of active vs passive transvascular delivery of a precision therapeutic unveils a new promising drug design, delivery and therapy paradigm ripe for expansion and clinical testing.


Assuntos
Anticorpos Biespecíficos , Cavéolas , Ratos , Animais , Cavéolas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Anticorpos Biespecíficos/metabolismo , Pulmão/metabolismo , Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...